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Characteristics of thermodiffusion molecular mass transfer of a binary "frozen" hydrogen–nitrogen gas mixture
are predicted by the method of entropy similarity. Calculations are made within a wide range of variation of
temperatures and concentrations at normal pressure.

The effect of thermal diffusion in gases strongly depends on the nature of forces of interaction between mole-
cules. Consequently, values of thermodiffusion constants and thermodiffusion relations, being a complex function of
temperatures, concentrations, and masses of molecules [1], can be used for determination of force parameters of inter-
molecular interactions and, thus, calculation of other coefficients of transfer (viscosity, thermal conductivity, and mu-
tual diffusion) [1] without resorting to complex, labor-consuming, and expensive experiments. In [2–4] it is shown
where the characteristics of thermodiffusion molecular transfer of binary gas mixtures are used.

In molecular-kinetic diffusion in the two-flask installation designed by Chapman and Dootson [5], a steady
state is reached upon termination of the process of separation of a mixture having a certain constant composition; con-
centrations of the mixture in the flasks of the device take different fixed values. Certain values of entropies correspond
to temperatures of the "cold" and "hot" flasks of the device and concentrations of mixture attained in them. Thus,
mass transfer in a connecting capillary tube (thermodiffusion cell) under steady-state conditions is kept due to the dif-
ference of potentials at its ends, i.e., due to the difference of absolute molar entropies. Consequently, a thermodiffusion
cell of the Chapman–Dootson two-volume device can be considered as a physical model in generalization of experi-
mental data on thermodiffusion separation.

Processing of the results on thermal diffusion of binary gas systems given in [6–11] allowed one to obtain a
similarity equation:

∆λ
∆λ∆S

 = A 
S1 − S2

R
 . (1)

The scale thermodiffusion separation ∆λ∆S was determined in variation of molar entropies at the boundaries of
the scale cell [4.1896 kJ/(kmole⋅K) = 1 kcal/(kmole⋅K)] reckoned from a constant value of S1. The latter was taken
proceeding from the available experimental data [12–15] with account for conveniency of calculations.

The essence of the generalization method was considered in [7, 10], where it was shown that for most binary
mixtures studied the values of ∆λ∆S are constant for the mixture of the given composition at any temperature of the
"cold" and "hot" flasks of the device.

Absolute molar entropies of mixtures were determined by the relations

S1 = n20
′ S20

′  + n10
′ S10

′  ,   S2 = n20S20 + n10S10 , (2)

and thermodiffusion characteristics were found from the formulas [1]

∆λ = kth ln (T1
 ⁄ T2) ,   αth = 

kth
n10n20

 ,   ln q = αth ln (T1
 ⁄ T2) ,   Dth = Dkth , (3)
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TABLE 1. Calculated Values of the Coefficients of Separation, Thermodiffusion Separation, and Thermodiffusion Ratios of
the Binary Hydrogen–Nitrogen Gas System

T1, K T2, K q ∆λ, % kth

1 2 3 4 5

n20
′  = 0.9, ∆λ∆S = 0.0063

6000 1400 1.6721 7.38 0.0507
5000 1200 1.6443 7.03 0.0493
4000 1000 1.6093 6.58 0.0475
4000 500 1.8463 9.43 0.0454
6000 290 2.1400 13.91 0.0459
2000 290 1.7650 8.14 0.0422
1200 290 1.5482 5.83 0.0410
700 290 1.3563 3.58 0.0406
400 290 1.1460 1.30 0.0405

n20
′  = 0.8, ∆λ∆S = 0.0115

6000 1400 1.7725 12.58 0.0865
5000 1200 1.7357 12.00 0.0841
4000 1000 1.6898 11.27 0.0813
4000 500 1.9850 16.16 0.0777
6000 290 2.8001 23.82 0.0786
2000 290 1.7653 13.98 0.0724
1200 290 1.6150 10.00 0.0704
700 290 1.3738 6.13 0.0696
400 290 1.1452 2.24 0.0695

n20
′  = 0.7, ∆λ∆S = 0.0153

6000 1400 1.9005 15.97 0.1098
5000 1200 1.8508 15.25 0.1069
4000 1000 1.7893 14.37 0.1037
4000 500 2.2818 20.62 0.0992
6000 290 3.7500 30.34 0.1001
2000 290 2.0591 17.87 0.0925
1200 290 1.6872 12.78 0.0899
700 290 1.3905 7.82 0.0888
400 290 1.1398 2.86 0.0887

n20
′  = 0.6, ∆λ∆S = 0.0167

6000 1400 1.9758 17.11 0.1176
5000 1200 1.8819 16.40 0.1149
4000 1000 1.8451 15.48 0.1117
4000 500 2.4906 22.22 0.1069
6000 290 4.9300 32.66 0.1078
2000 290 2.1852 19.30 0.0999
1200 290 1.7109 13.79 0.0970
700 290 1.3780 8.43 0.0957
400 290 1.1301 3.08 0.0956

n20
′  = 0.5, ∆λ∆S = 0.0143

6000 1400 1.9421 15.09 0.1037
5000 1200 1.8565 14.48 0.1015
4000 1000 1.8250 13.70 0.0988
4000 500 2.5349 19.66 0.0946
6000 290 5.6328 28.84 0.0952
2000 290 2.2000 17.10 0.0886
1200 290 1.8502 12.21 0.0859
700 290 1.3564 7.45 0.0846
400 290 1.1154 2.72 0.0845

n20
′  = 0.4, ∆λ∆S = 0.0114

6000 1400 1.9081 12.47 0.0857
5000 1200 1.8559 11.99 0.0840
4000 1000 1.7872 11.36 0.0820
4000 500 2.5100 16.31 0.0785
6000 290 6.0001 23.87 0.0788
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TABLE 1                                                                                                                                             Continued

1 2 3 4 5

2000 290 2.1802 14.20 0.0735
1200 290 1.6542 10.13 0.0713
700 290 1.3338 6.18 0.0701
400 290 1.1031 2.25 0.0699

n20
′  = 0.3, ∆λ∆S = 0.0086

6000 1400 1.8651 9.76 0.0670
5000 1200 1.7932 9.40 0.0659
4000 1000 1.7483 8.92 0.0644
4000 500 2.4920 12.80 0.0616
6000 290 6.5000 18.70 0.0617
2000 290 2.1531 11.16 0.0578
1200 290 1.6233 7.96 0.0560
700 290 1.3094 4.85 0.0551
400 290 1.0938 1.77 0.0550

n20
′  = 0.2, ∆λ∆S = 0.0057

6000 1400 1.8330 6.72 0.0462
5000 1200 1.7532 6.49 0.0455
4000 1000 1.7191 6.17 0.0445
4000 500 2.4498 8.85 0.0426
6000 290 7.4308 12.90 0.0426
2000 290 2.1250 7.72 0.0400
1200 290 1.5850 5.51 0.0388
700 290 1.2839 3.35 0.0380
400 290 1.0861 1.22 0.0379

n20
′  = 0.1, ∆λ∆S = 0.0030

6000 1400 1.8192 3.68 0.0253
5000 1200 1.7500 3.55 0.0249
4000 1000 1.6754 3.38 0.0244
4000 500 2.4399 4.85 0.0233
6000 290 8.0659 7.06 0.0233
2000 290 2.0951 4.24 0.0220
1200 290 1.5502 3.02 0.0213
700 290 1.2652 1.84 0.0209
400 290 1.0853 0.67 0.0208

TABLE 2. Calculated Values of the Coefficients of Thermal Diffusion (Dth⋅106, m2/sec) of the Binary Hydrogen–Nitrogen
Gas System

n20
′

TBr, K

923.2 655.0 543.1 436.3 339.1

D⋅106, m2/sec

558 316 235 161 111

0.9 25.61 13.34 9.64 6.54 4.52
0.8 43.86 22.88 16.54 11.21 7.78
0.7 55.91 29.26 21.13 14.30 9.96
0.6 60.15 31.57 22.80 15.41 10.77
0.5 53.12 27.97 20.19 13.62 9.56
0.4 43.97 23.23 16.76 11.29 7.95
0.3 34.43 18.26 13.16 8.86 6.25
0.2 23.77 12.64 9.09 6.12 4.34
0.1 13.00 6.95 4.98 3.35 2.39
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∆λ = n20
′  − n20 . (4)

It is known [1] that n10′  = 1 − n20′  C 1 − n2, n20′  C n2, since V′ >> V; the relation n20′  C n2 was taken into ac-
count in comparison of calculated and experimental data.

The quantities q, ∆λ, αth, kth, and Dth are calculated by (1)–(4) within the limits of the determining similarity
criterion (S1 − S2)/R from 0 to 9.80 (found in generalization in [6–11]) for wide ranges of variation of arbitrarily cho-
sen temperatures and compositions of the hydrogen–nitrogen mixture. An example of calculation is given in [10]. The
characteristics of thermodiffusion molecular mass transfer for the ranges of parameters for which experimental data are
absent were obtained for the first time. Prediction of characteristics of thermodiffusion molecular mass transfer of the
hydrogen–nitrogen mixture turned out to be possible, since Eq. (1), as was shown in [7–11], is not limited by the
ranges of variation of the parameters of state. In calculations by (1)–(4), the hydrogen–nitrogen mixture was taken to
be "frozen." The ranges of variation of the parameters of state, at which calculations were made, are the following:
n20′  — from 0.1 to 0.9, T1 — from 6000 to 4000 K, and T2 — from 1400 to 290 K. The error of generalization
which was estimated in [6, 8–11] is %(3–4)%.

TABLE 4. Comparison of Experimental and Calculated Values of Thermodiffusion Constant of the Hydrogen–Nitrogen Gas
System (TBr = 318.6 K)

Parameters
n20

′

0.1 0.2 0.3 0.4 0.5 0.6 0.7

αth
e  [14] 0.232 0.255 0.280 0.308 0.338 0.368 0.402

αth
c 0.245 0.249 0.273 0.301 0.334 0.400 0.418

ε, % 5.6 –2.4 –2.5 –2.3 –1.2 8.7 4.0

TABLE 3. Comparison of Experimental and Calculated Values of Thermodiffusion Separation of the Hydrogen–Nitrogen
Gas System

n20
′ log (T1

 ⁄ T2) T1 ∆λe, % ∆λc, % ε, %

0.2188

0.2
2.39∗ 1.99 –16.7

0.5000 3.84∗ 3.84 0

0.7100 3.46∗ 3.88 12.1

0.2188

0.4
4.80∗ 3.70 –22.9

0.5000 8.18∗ 7.60 –7.1

0.7100 7.35∗ 7.96 8.3

0.2188
0.6

7.32∗ 5.83 –20.4

0.5000 12.96∗ 11.80 –9.0

0.7100 11.75∗ 12.01 2.2

0.327

547 3.67∗∗ 3.77 2.7

510 3.46∗∗ 3.25 –6.1

479 3.03∗∗ 2.94 –3.0

456 2.50∗∗ 2.72 8.8

418 2.26∗∗ 2.15 –4.9

379 1.71∗∗ 1.64 –4.1

328 0.76∗∗ 0.77 1.3

∗ , by the data of [12]; ∗ ∗ , by the data of [13] at T2 = 284 K.
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Tables 1–4 and Fig. 1 give the results of the calculations. Table 2, moreover, presents values of the coeffi-
cients of mutual diffusion interpolated by the data of [16]. In Tables 3 and 4, the data on comparison of experimental
and calculated data are given. The following quantities were used in comparison of experimental and calculated ther-
modiffusion relations of the hydrogen–nitrogen gas system: n20′  = 0.500, log (T1

 ⁄ T2) = 0.173, kth
e  = 0.0346 [14], kth

c  =
0.0345, and ε = 1%.

Thermodiffusion constants of the mixture studied were determined in [14] experimentally at a pressure of 125
mm Hg and a mean Brown temperature [1]:

TBr = 
T1T2

T1 − T2
 ln 

T1

T2
 .

In the present paper, generalization [6–11] and, thus, prediction of the characteristics of molecular thermodif-
fusion mass transfer were made at values of absolute molar entropies related to normal pressure. It is known that for
simple binary gas systems, thermodiffusion constants do not depend on pressure from atmospheric and below [1].
Therefore, experimental data of [14] (see Table 4) are compared with calculated ones. It is seen from this table that
the thermodiffusion constant αth increases with an increase of n20′  at TBr = 318.6 K. This is in correspondence with
the results of the present calculations.

It follows from Fig. 1a that at T1 = 6000 K, T2 = 290 K and with an increase of n20′  the thermodiffusion
constant αth decreases within the entire range of variation of concentrations (curve 6) and at T1 = 2000 K, T2 = 290
K, and n20′  = 0.4 it reaches a maximum (curve 5). It is characteristic that within the entire range of variation of con-
centrations the thermodiffusion constant αth at T1 = 6000 K is higher than in the case when T1 = 2000 K, which cor-
responds to the physical essence of the process of thermodiffusion. It follows from Fig. 1a that at T1 = 400 K, T2 =
290 K (curve 2) and as n20′  increases, the thermodiffusion constant αth increases within the entire range of variation
of concentrations, i.e., the dependence αth(n20′ ) has a qualitatively different form compared to the same dependence at
a larger temperature difference T1 = 6000 K, T2 = 290 K (curve 6). The dependences αth(n20′ ) at both T1 = 700 K,
T2 = 290 K (curve 1) and T1 = 1200 K, T2 = 290 K (curve 3) reach maximum values of the thermodiffusion con-
stants αth at n20′  equal to 0.7 and 0.5, respectively. In this figure, maximum values of the thermodiffusion constants
αth of the dependences αth(n20′ ) (curves 2–4) are in qualitative agreement with the classical dependences of thermodif-
fusion separation ∆λ on the mixture composition. It follows from Fig. 1b that within the range of concentrations n20′

= 0.7–0.9 (curves 7–9) and n20′  = 0.1–0.3 (curves 1–3) the dependences αth(TBr) have almost the same qualitative
character; however, at n20′  = 0.4–0.6 (curves 4–6) the dependences αth(TBr) have another form. This variation corre-
sponds to the dependences ∆λ(n20′ ) when thermodiffusion separations reach maximum values at concentrations n20′  =
0.4–0.6.

Fig. 1. Dependences of thermodiffusion constants on concentrations of hydro-
gen in the "hot" flask of the thermodiffusion device after separation at fixed
temperatures (a) [1) T1 = 6000 K; 2) 2000; 3) 1200; 4) 700; 5) 400; T2 = 290
K] and on mean Brown temperatures at fixed compositions of hydrogen (b) [1)
n20′  = 0.1; 2) 0.2; 3) 0.3; 4) 0.4; 5) 0.5; 6) 0.6; 7) 0.7; 8) 0.8; 9) 0.9].
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NOTATION

A, dimensionless constant; D and Dth, coefficients of mutual and thermal diffusion, m2/sec; kth, thermodiffu-
sion ratio, mole fractions; n2, concentration of hydrogen in the thermodiffusion device before the process of separation,
mole fractions; n10 and n20, concentration of nitrogen and hydrogen, respectively, in the "cold" flask of the thermodif-
fusion device in the equilibrium state, mole fractions; n10′  and n20′ , concentration of nitrogen and hydrogen, respec-
tively, in the "hot" flask of the thermodiffusion device in the equilibrium state, mole fractions; q, coefficient of
separation; R, universal gas constant, kJ/(kmole⋅K); S1 and S2, absolute molar entropies of the mixture in the equilib-
rium state in the "cold" and "hot" flasks of the thermodiffusion device, kJ/(kmole⋅K); S10′  and S20′ , absolute molar en-
tropies of nitrogen and hydrogen in the "hot" flask of the thermodiffusion device in the equilibrium state,
kJ/(kmole⋅K); S10 and S20, absolute molar entropies of nitrogen and hydrogen in the "cold" flask of the thermodiffu-
sion device in the equilibrium state, kJ/(kmole⋅K); T1 and T2, absolute temperatures of the "hot" and "cold" flasks of
the thermodiffusion device, i.e., absolute temperatures at the boundaries of the system under consideration, K; TBr, ab-
solute mean Brown temperature, K; V′ and V, volumes of the "hot" and "cold" flasks of the thermodiffusion device,
m3; αth, thermodiffusion constant; ∆λ, thermodiffusion separation, mole fractions, % — in tables; ∆λ∆S, scale ther-
modiffusion separation, mole fractions; ε, deviation of calculated values from experimental ones, %. Indices: th, ther-
mal; e, experiment; c, calculation.

REFERENCES

1. K. E. Grew and T. L. Ibbs, in: Thermal Diffusion in Gases [Russian translation], Moscow (1956), pp. 13, 14,
18, 22, 43, 45, 46, 58, 75, 80.

2. A. N. Berezhnoi, Zh. Fiz. Khim., 69, No. 9, 1708–1710. (1995).
3. A. N. Berezhnoi, Inzh.-Fiz. Zh., 70, No. 1, 64–67 (1997).
4. A. N. Berezhnoi, Teor. Osn. Khim. Tekhnol., 32, No. 3, 333–336 (1998).
5. S. Chapman and F. W. Dootson, Philos. Mag., 33, No. 195, 248–253 (1917).
6. A. G. Usmanov and A. N. Berezhnoi, Tr. Kazansk. Khim.-Tekhnol. Inst., Issue 26, Ser. Khim. Nauk, 176–182

(1959).
7. A. G. Usmanov and A. N. Berezhnoi, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 3, No. 1, 8–13

(1960).
8. A. G. Usmanov and A. N. Berezhnoi, Zh. Fiz. Khim., 34, No. 4, 907–920 (1960).
9. A. G. Usmanov and A. N. Berezhnoi, in: Heat Transfer and Thermal Modeling [in Russian], Moscow (1960),

pp. 188–204.
10. A. G. Usmanov and A. N. Berezhnoi, Tr. Kazansk. Khim.-Tekhnol. Inst., Issue 27, Ser. Mekh. Nauk, 239–246

(1961).
11. A. G. Usmanov and A. N. Berezhnoi, in: Proc. Interinstitutional Conf. "Machines and Apparatuses of Diffusion

Processes" [in Russian], Kazan’ (1961), pp. 9–29.
12. V. P. S. Nain and S. C. Saxena, J. Chem. Phys., 51, No. 4, 1541–1545 (1969).
13. T. L. Ibbs, Proc. Roy. Soc. London, 107A, No. 743, 470–486, (1925).
14. N. Farag, E. A. Salam, und F. Shahin, Zeit. Phys. Chem., 245, Nos. 3–4, 145–153 (1970).
15. E. W. Becker, J. Chem. Phys., Vol. 19, No. 1, 131–132 (1951).
16. N. B. Vargaftik, in: Handbook on Thermophysical Properties of Gases and Liquids [in Russian], Moscow

(1972), p. 635.

435


